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Abstract: We examined the association between caffeine and coffee intake and the community
composition and structure of colonic microbiota. A total of 34 polyp-free adults donated 97 colonic
biopsies. Microbial DNA was sequenced for the 16S rRNA gene V4 region. The amplicon sequence
variant was assigned using DADA2 and SILVA. Food consumption was ascertained using a food
frequency questionnaire. We compared the relative abundance of taxonomies by low (<82.9 mg)
vs. high (≥82.9 mg) caffeine intake and by never or <2 cups vs. 2 cups vs. ≥3 cups coffee intake.
False discovery rate-adjusted p values (q values) <0.05 indicated statistical significance. Multivariable
negative binomial regression models were used to estimate the incidence rate ratio and its 95%
confidence interval of having a non-zero count of certain bacteria by intake level. Higher caffeine
and coffee intake was related to higher alpha diversity (Shannon index p < 0.001), higher relative
abundance of Faecalibacterium and Alistipes, and lower relative abundance of Erysipelatoclostridium
(q values < 0.05). After adjustment of vitamin B2 in multivariate analysis, the significant inverse
association between Erysipelatoclostridium count and caffeine intake remained statistically significant.
Our preliminary study could not evaluate other prebiotics in coffee.

Keywords: phytochemical; coffee; diet; microbiome; Erysipelatoclostridium; riboflavin

1. Introduction

Caffeine has been widely consumed in food and drink for centuries. Caffeine is well
known for stimulating wakefulness, alertness, and energy. Caffeine has been associated
with decreased risk of cardiovascular disease, Parkinson’s disease, and type 2 diabetes
mellitus [1,2]. Some gastrointestinal health benefits from caffeine include decreased odds
of ulcerative colitis and acute colitis development with in vitro and in vivo studies [3,4],
reduced hepatic fibrosis in patients with mild to advanced hepatic fibrosis [5,6], and lower
risk of developing colorectal cancer [7].

Caffeine is known to antagonize the adenosine A1 and A2a receptors, mobilize intracel-
lular calcium in muscle tissue, and inhibit phosphodiesterases and gamma-aminobutyric
acid receptors, leading to increased catecholamine synthesis and turnover in the body
and enhanced secretion of dopamine, serotonin, and acetylcholine in the central nervous
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system [8]. While these effects could explain caffeine’s neuropsychiatric effects, they
do not readily explain caffeine’s effects on cancer, cardiovascular disease, liver disease,
and diabetes.

Previous studies have suggested that coffee modulates gut microbiota. One study
showed that coffee intake decreased the relative abundance of Prevotella in fecal samples
in a mouse model [9]. In contrast, another study in humans showed that heavy coffee
consumers (45–500 mL/daily) had higher fecal Prevotella abundance [10]. Prevotella has a
complex association with inflammation and obesity. Another study showed that 16 adults
who consumed three cups of coffee daily for three weeks had an increased abundance of
anti-inflammatory Bifidobacterium in their feces [11]. However, the association between the
intake of phytochemicals in coffee, such as caffeine, and gut microbiota has not been well
established in either experimental models or humans.

In this cross-sectional study, we compared the community composition and struc-
ture of the colonic adherent microbiota based on caffeine intake using 16S rRNA gene
sequencing among 34 individuals with endoscopically normal colons. We hypothesized
that individuals with higher caffeine intake could have different microbial community
composition and structure compared to those with lower caffeine intake. Because coffee is
the major source of caffeine [12], we also evaluated the association between coffee consump-
tion and gut microbiota in the present study. Better knowledge of the association between
caffeine and coffee intake and the gut microbiota may help refine dietary guidance.

2. Materials and Methods
2.1. Study Participants

Participants were recruited at the endoscopy suite of the Michael E. DeBakey VA
Medical Center (MEDVAMC) in Houston, Texas, between July 2013 and April 2017. The
study cohort, study design, and exclusion criteria were described in detail previously [13].
Individuals were eligible to be enrolled in the study if they were between 50 and 75 years
of age. Individuals were ineligible if they had the following: (1) hereditary polyposis
syndromes such as familial adenomatous polyposis and hereditary non-polyposis colon
cancer; (2) inflammatory bowel disease; (3) invasive cancer except for non-melanoma skin
cancer; (4) colorectal polyps in the past three years; (5) end-stage renal disease requiring
dialysis; (6) severe mental disabilities; (7) hospitalization within the past year; (8) oral or
systemic use of antibiotics in the past three months; (9) hepatitis B or C infections; (10) HIV
or methicillin-resistant Staphylococcus aureus-positive infection; or (11) contraindications
to obtaining mucosal biopsies.

The study protocol was approved by the Institutional Review Board of Baylor College
of Medicine (BCM) and MEDVAMC. All procedures performed in studies involving human
participants were in accordance with the ethical standards of the institutional and/or na-
tional research committee and with the 1964 Helsinki Declaration and its later amendments
or comparable ethical standards. The research coordinator obtained informed consent
from participants during their attendance at an educational session 1–2 weeks before
the colonoscopy.

2.2. Data Collection

After obtaining informed consent, the research coordinator administered a question-
naire collecting information on lifestyle, social history, and medical history. We assessed
caffeine intake and the number of cups of coffee consumed in the past 12 months using
the validated self-administered Block Food Frequency Questionnaire (FFQ) 2005 [14]. Par-
ticipants answered questions on daily liquid intake, including “how often did you drink
coffee, regular or decaf in the past year” and “how many cups did you drink per day in
the past year?”. All categories were combined to arrive at aggregate caffeine intake by
Nutritionquest. Caffeine intake (mg/day) was derived from coffee, hot tea, iced tea, and
40 other food items. All diet and nutrient variables were energy-adjusted using the density
method. The healthy eating index (HEI) 2015 was used to score dietary quality [15].



Nutrients 2023, 15, 1747 3 of 12

2.3. Colonoscopy and Biopsy Requirement

Participants were advised to stop taking aspirin, anti-inflammatory drugs, blood
thinners, iron, or vitamins with iron seven days before the procedure and to stop diabetic
medication one day before the procedure [13]. Participants took 3.78 L of polyethylene
glycol (Golytely) the night before the colonoscopy. During the procedure, endoscopists
obtained biopsies from each colonic segment (cecum, ascending, transverse, descending,
sigmoid colon, or rectum) when possible.

We enrolled 612 eligible participants in the study. Of 174 participants who were
confirmed polyp-free, 134 consented to provide colonic mucosal biopsies. Samples from
69 polyp-free participants were sent for microbiota profiling. Among those, 40 returned the
Block FFQ. Five study participants who had self-reported energy intake <800 or >5000 kcal
per day were excluded from the analysis. As a result, the sequencing data of 99 mucosal
samples from 35 participants were available for analysis. A flow chart of participant
selection and final sample size is shown in Figure 1.
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2.4. Microbial DNA Extraction and 16S rRNA Gene Sequencing

The library preparation and sequence analysis were performed at the Alkek Center for
Metagenomics and Microbiome Research at BCM. Microbial genomic DNA was extracted
from biopsies using the MO BIO PowerLyzer UltraClean Tissue & Cell DNA Isolation Kits
(MO BIO Laboratories, Claridad, CA, USA). All DNA samples were stored at −80 ◦C until
further analysis.

The 16S rRNA hypervariable region 4 (V4) was amplified using PCR with the barcoded
Illumina adaptor-containing primers 515F and 806R and sequenced on the MiSeq platform
(Illumina, San Diego, CA, USA). The 2 × 250 bp paired-end protocol yielded pair-end reads
that overlapped almost completely [16–18].
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2.5. Bioinformatics and Taxonomic Assignment

We used the in-house bioinformatics pipeline for data analysis. Reads were merged
using USEARCH v7.0.1090 [19]. A quality filter was applied to the merged reads, and those
containing more than 0.5% expected errors were discarded. We used the Divisive Amplicon
Denoising Algorithm 2 (DADA2) v1.10.1 package in R v3.3.3 to classify the bacteria using
the amplicon sequence variants (ASVs). The ASVs were mapped to the SILVA v128 to
determine taxonomies [20,21]. A rarefaction curve, using a factor of 4356, was constructed
using the sequence data for each sample to ensure that we sampled most of its microbial
diversity. Following rarefaction, two mucosal samples with poor sequence reads were lost,
including one sample from a participant who contributed one piece of biopsy. Therefore,
we included 97 mucosal samples of 34 participants in the final analysis (Figure 1).

2.6. Statistical Analysis

Caffeine intake was categorized into higher vs. lower based on the median consump-
tion of the 34 participants, 82.9 mg per day. The standard amount of caffeine in 5 ounces of
coffee is 85 mg [22]. Coffee intake was categorized into “<2 cups (16 oz)”, “2 cups”, and
“≥3 cups (24 oz)”.

The study participants’ sociodemographic and clinical characteristics and nutrient in-
take were compared based on caffeine and coffee intake using Fisher’s exact test, Student’s t
test, or ANOVA. The bacterial alpha diversity (the number of observed OTUs and Shannon
Index) and the relative abundance of taxa were compared based on the intake of caffeine
and coffee using a Wilcoxon test or Kruskal–Wallis test when appropriate. PERMANOVA
with weighted UniFrac dissimilarity and principal-coordinate analysis were carried out for
microbial beta diversity analyses [23]. The Monte Carlo permutation test was performed to
estimate p values. For bacteria with a relative abundance >1% that differed significantly
(q < 0.05) by both caffeine and coffee intake, we used multivariable negative binomial
regression models for panel data to examine the incidence rate ratio (IRR) and its 95% confi-
dence interval (CI) of having non-zero bacterial count in those with higher intake of caffeine
or coffee compared with those with a lower intake, adjusting for age (continuous), ethnicity
(non-Hispanic white, non-Hispanic African American, and Hispanic), body mass index
(BMI) (continuous), smoking (never, former, and current), alcohol use (never, former, and
current), HEI score (continuous), and colon segments. Intakes of other nutrients, including
total fat, total carbohydrate, total protein, and vitamin B family (vitamin B2, B6, and B12),
were also evaluated as potential confounding factors. Vitamin B2 intake was adjusted
in the multivariate model in addition to HEI because it differed significantly by caffeine
intake and was associated with the relative abundance and count of gut bacteria [24].
Coffee intake was modeled as a continuous variable in the multivariable model. We treated
each participant as a panel because some participants contributed multiple biopsies to
the analysis.

We used STATA 16.0 (Stata Corp LLC, College Station, TX, USA) and R program for
data analysis. All tests were two-sided. A p value < 0.05 indicated statistical significance.
In the microbiota analysis, all p values were adjusted for multiple comparisons using
the false discovery rate (FDR) algorithm [25]. FDR p values (q values) < 0.05 indicated
statistical significance.

3. Results

The average caffeine intake was 39.2 mg in those who had a “lower intake” and
138.9 mg in those who had a “higher intake”. The differences in the distribution of patients’
characteristics, lifestyle factors, HEI score, and intake of macronutrients by caffeine intake
(Table 1) and coffee intake (Supplemental Table S1) were largely not statistically significant.
Participants who had a higher caffeine intake had a statistically insignificant higher BMI
than those who had a lower intake (35.2 vs. 32.6 kg/m2, p value = 0.25). However, daily
vitamin B2 (riboflavin) and vitamin B6 intake was significantly higher among participants
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with higher caffeine intake (Table 1). Daily vitamin B2 intake was significantly higher in
participants with more coffee consumption (Supplemental Table S1).

Table 1. Basic characteristics of study participants based on caffeine intake.

Characteristics
Mean ± Standard Deviation or n (%)

Low Caffeine
< Median

(n = 17)

High Caffeine
≥ Median

(n = 17)
p Value

Caffeine (mg) 39.2 ± 6.4 138.9 ± 13.9 <0.0001
Age (years) 61.7 ± 1.3 62.2 ± 1.5 0.78
Men, n (%) 17 (100%) 16 (94%) 1.00

Racial Group
Non-Hispanic white, n (%) 14 (82.4%) 14 (82.4%) 1.00
Body mass index (kg/m2) 32.6 ± 1.5 35.2 ± 1.6 0.25

Smoking status, n (%) 0.55
Never smokers 7 (41.2%) 6 (35.3%)

Former smokers 8 (47.1%) 6 (35.3%)
Current smokers 2 (11.8%) 5 (29.4%)

Alcohol Status, n (%) 0.68
Never drinkers 4 (23.5%) 5 (29.4%)

Former drinkers 4 (23.5%) 6 (35.3%)
Current drinker 9 (53%) 6 (35.3%)

Hypertension, yes, n (%) 12 (70.6%) 13 (76.5%) 1.00
Diabetes, yes, n (%) 8 (47.1%) 9 (52.9%) 1.00

Daily total calorie intake (kcal) 2039 (±557) 1748 (±813) 0.23
Total carbohydrate (grams/1000 kcal/day) 116 (±23.5) 111 (±17.5) 0.53

Total protein (grams/1000 kcal/day) 36.4 (±5.78) 40.0 (±8.37) 0.16
Total fat (grams/1000 kcal/day) 41.0 (±8.78) 43.4 (±4.96) 0.33
Vitamin B2 (mg/1000 kcal/day) 0.89 (±0.20) 1.28 (± 0.30) 0.0001
Vitamin B6 (mg/1000 kcal/day) 0.82 (±0.16) 1.02 (± 0.34) 0.02

Vitamin B12 (mcg/1000 kcal/day) 2.20 (±0.23) 2.76 (± 0.98) 0.06
HEI score 1 60.5 (±2.0) 61.4 (±2.4) 0.77

1 HEI, healthy eating index.

Participants with higher caffeine intake had a higher alpha diversity (Shannon index,
q value < 0.001) (Figure 2). Alpha diversity did not differ by coffee intake (q = 0.19 for
Shannon index). Bacterial beta diversity, i.e., bacterial community composition, also differed
significantly based on the intake of caffeine (panel A) and coffee (panel B) (Figure 3).
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We did not observe a significant difference in the relative abundance of bacterial phyla based
on caffeine intake. At the family level, compared to lower caffeine intake, higher caffeine intake
was related to a higher relative abundance of Ruminococcaceae (9.32% vs. 16.7%) and a lower
relative abundance of Erysipelotrichaceae (4.25% vs. 1.56%) (q values < 0.05). At the genus level,
higher caffeine intake was related to a higher relative abundance of Faecalibacterium, Alis-
tipes, Subdoligranulum, and Prevotella but a lower relative abundance of Erysipelatoclostridium
and Lachnospiraceae (ASV0006) (q values < 0.05) (Table 2). Higher coffee intake (more than
2 cups) was related to a higher relative abundance of Faecalibacterium and Alistipes
(q values < 0.05) and a lower relative abundance of Erysipelatoclostridium (Table 2). Supple-
mental Figure S1 shows that many members of Lachnospiraceae family differed by caffeine intake.
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Table 2. Relative abundance of bacterial genera by intake of caffeine and coffee.

Lower
Caffeine

Higher
Caffeine

<2 Cups
Coffee

2 Cups
Coffee

≥3 Cups
Coffee

Bacterial Genus Relative Abundance (%) q Value Relative Abundance (%) q Value

Erysipelatoclostridium 3.14 0.10 <0.0001 1.42 1.79 0.19 0.22
Faecalibacterium 4.29 9.54 0.0003 5.66 5.26 15.16 <0.0001
Lachnospiraceae (ASV0006) 4.88 1.58 0.0007 3.46 2.56 2.03 0.33
Alistipes 0.57 1.32 0.01 0.46 1.31 1.84 <0.0001
Subdoligranulum 0.10 0.76 <0.0001 0.15 1.13 0.29 <0.0001
Sutterella 1.96 1.59 0.89 1.54 2.21 1.41 0.02
Prevotella 1.39 3.41 0.03 2.40 3.64 1.50 0.16

In the multivariable negative binomial regression models, the incidence rate of hav-
ing a non-zero count of Alistipes (IRR: 3.05, 95% CI: 1.10–8.48) and Faecalibacterium (IRR:
5.28; 95% CI: 2.68–10.4) was higher and the incidence rate of having a non-zero count of
Erysipelatoclostridium (IRR: 0.07; 95% CI: 0.02–0.25) was lower in those who had higher
caffeine intake compared to those who had lower caffeine intake. Higher coffee intake was
associated with higher Alistipes (IRR: 2.84; 95% CI: 1.38–5.84) and Faecalibacterium (IRR: 2.35;
95% CI: 1.50–3.68) and lower Erysipelatoclostridium (IRR: 0.24; 95% CI: 0.07–0.84). Adjusting
for total energy intake, BMI, and macronutrients in the analyses did not change the rate
ratio estimate. However, the associations between Faecalibacterium, Alistipes, and caffeine
and coffee intake were attenuated after adjustment of vitamin B2. There were also no
significant associations between bacterial count and coffee intake. There was a statistically
significant inverse association between Erysipelatoclostridium count and caffeine intake (IRR:
0.02; 95% CI: 0.003–0.17, q value < 0.05) (Table 3). In addition, adjusting for vitamin B6 in
the model slightly attenuated the association between Alistipes count and caffeine intake,
and adjusting for vitamin B12 in the model slightly attenuated the association between
Faecalibacterium count and caffeine intake.

Table 3. Multivariable negative binomial regression analysis of the association between caffeine and
coffee intake and a non-zero bacterial count.

Genera IRR (95% CI) 1 IRR (95% CI) 2 IRR (95% CI) 3

Caffeine
Alistipes 3.17 (1.16–8.66) 3.05 (1.10–8.48) 1.40 (0.32–6.19)

Faecalibacterium 5.56 (2.84–10.9) 5.28 (2.68–10.4) 2.10 (0.85–5.20)
Erysipelatoclostridium 0.07 (0.02–0.25) 0.07 (0.02–0.25) 0.02 (0.003–0.17)

Subdoligranulum 0.85(0.49–1.48) 0.86 (0.52–1.42) 1.17 (0.57–2.42)
Coffee

Alistipes 2.86 (1.37–5.97) 2.84 (1.38–5.84) 2.20 (1.00–4.89)
Faecalibacterium 2.39 (1.53–3.73) 2.35 (1.50–3.68) 1.49 (0.87–2.56)

Erysipelatoclostridium 0.26 (0.08–0.84) 0.24 (0.07–0.84) 0.31(0.07–1.36)
Subdoligranulum 1.08 (0.74–1.57) 0.97 (0.66–1.42) 1.10 (0.73–1.66)

CI: confidence interval. IRR: incidence rate ratio. 1 Negative binomial regression model for panel data used the
rarefied bacterial count as the dependent variable. The reference group was lower intake of caffeine or coffee.
Coffee intake was modeled as a continuous variable. The model was adjusted for age, race (non-Hispanic white,
African American, and Hispanic), body mass index, smoking status (never, former, and current), alcohol use
(never, former, and current), diabetes, hypertension, and colon segment. The incidence rate of having non-zero
Faecalibacterium count was 4.56 times higher among those who had a higher intake of caffeine than those who had
a lower intake. 2 Based on the first model, the model was further adjusted for HEI score. The incidence rate of
having a non-zero Faecalibacterium count was 4.28 times higher among those who had a higher intake of caffeine
than those who had a lower intake. 3 Based on the second model, the model was further adjusted for vitamin B2
intake. The incidence rate of having a non-zero Faecalibacterium count was 1.10 times higher among those who
had a higher intake of caffeine than those who had a lower intake.

4. Discussion

This cross-sectional study showed that the colonic mucosa-associated bacteria differed
significantly in the community composition and structure based on daily caffeine and
coffee intake in adults. Higher caffeine and coffee intake was associated with higher
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richness and evenness of gut microbiota, a higher relative abundance of Faecalibacterium
and Alistipes, and a lower relative abundance of Erysipelatoclostridium independent of
multiple covariates. However, further multivariate analysis showed that vitamin B2 intake
partially explained such observations. The association between Erysipelatoclostridium count
and caffeine intake remained statistically significant after vitamin B2 intake was adjusted
in the analysis. There was no significant association between bacterial count and coffee
intake in multivariate models.

Our study showed that higher caffeine intake, but not coffee consumption, was associ-
ated with higher alpha diversity, i.e., richness and evenness of the gut bacteria in the colonic
mucosa. In a Dutch population-based cohort study, coffee was shown to be associated
with higher microbial alpha diversity. However, this study did not evaluate the association
between phytochemicals in coffee and gut microbiota [26]. The beta diversity analysis
showed a significant dissimilarity of bacterial community composition based on both caf-
feine intake and coffee consumption. Studies have associated lower alpha diversity with
adverse health outcomes, such as a higher risk of colorectal cancer [27] and inflammatory
bowel disease [28]. Whether caffeine could affect health outcomes through modulating gut
microbiota biodiversity should be evaluated further.

We observed that higher caffeine intake and higher coffee consumption were related
to a higher relative abundance of Faecalibacterium. A previous study showed increased
Faecalibacterium species after mice fed a high-fat diet were treated with a caffeine-rich Chi-
nese tea [29]. Faecalibacterium is a butyrate-producing bacterium [30] that has been shown
to have positive impacts on human energy metabolism [31], and its anti-inflammatory
properties have been shown [32]. Higher caffeine intake was also associated with a higher
relative abundance of Alistipes, which belongs to Bacteroidetes phylum. Alistipes has been
shown to be more abundant in populations with animal-based diets than in those with
plant-based diets. It is more bile-tolerant and capable of protein breakdown [33]. Alistipes
has been associated with both favorable and adverse health outcomes. Previous studies
showed an inverse correlation between Alistipes and obesity [34], ulcerative colitis [35], and
Clostridium difficile infection [36]. Conversely, an increased abundance of Alistipes has been
associated with a higher frequency of abdominal pain in pediatric patients with irritable
bowel syndrome [37]. It is noted that the adjustment of dietary vitamin B2 intake attenu-
ated the association between caffeine and coffee intake and Faecalibacterium and Alistipes.
Whether Faecalibacterium and Alistipes are independently modulated by caffeine in the
colonic mucosa and the interaction between vitamin B2 and the colonic microenvironment
should be further investigated.

Participants with lower caffeine intake had higher relative abundances of the Gram-
positive obligate-anaerobe Erysipelotrichaceae family and Erysipelatoclostridium genus than
those with higher caffeine intake. This observation remained statistically significant in mul-
tivariate analysis controlling vitamin B2 intake. Erysipelatoclostridium belongs to Firmicutes
phylum. Higher Erysipelatoclostridium levels have been linked to diet-induced obesity in
mouse models [38] and obesity in humans [39,40]. A previous study showed that patients
with type 2 diabetes had higher Erysipelotrichaceae levels than patients with normal glucose
tolerance [41]. There is growing evidence showing the adverse roles of Erysipelotrichaceae
and Erysipelatoclostridium play in host lipid metabolism [42], immune response [43], inflam-
mation [44], depression [45], metabolic-associated fatty liver disease [46], cancer [47], and
response to cancer immune therapy [48,49]. However, in a human-based study, increased
physical activity was associated with a higher relative abundance of Erysipelotrichaceae [50].
Nevertheless, given most studies have shown the detrimental effect of Erysipelatoclostridium
on health, identifying pre- and probiotics that deplete this bacterium would be beneficial.
It remains to be determined whether caffeine influences insulin resistance or metabolic
diseases by modulating Erysipelatoclostridium.

As alluded to above, coffee has been shown to beneficially modulate human metabolic
health by lowering the risks of obesity, type 2 diabetes, and metabolic syndrome [51–53]. The
bioactive components in coffee include phenolic compounds (chlorogenic acids (CGAs)),
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alkaloids (caffeine and trigonelline), and diterpenes (cafestol and kahweol) [54]. One
fecal microbial study of 147 patients found that polyphenol intake was similar between
lower and higher coffee consumers. The author hypothesized that low coffee consumers
could obtain polyphenols through other sources [10]. Several studies investigated the
influence of caffeine, polyphenols, and CGAs on the gut microbiota. One in vitro colonic
metabolism study found that coffee with the highest CGA levels induced a significant
0.5 logarithmic increase in the growth of Bifidobacterium spp. [55]. CGAs significantly
increased the growth of Bifidobacterium spp. and Clostridium coccoides/Eubacterium rectale in a
colonic microbiota culture model [55] and a human interventional study [56]. However, our
study could not confirm the previous observation on Bifidobacterium and coffee intake [11].
The relative abundance of Bifidobacterium in the colonic mucosa was less than 0.50% in our
study samples. Nevertheless, our study showed that the relative abundance of Prevotella
was higher with a higher intake of caffeine and coffee. This observation was consistent with
a human-based study that showed higher coffee consumers (45–500 mL/daily) had higher
fecal Prevotella abundance [10]. However, it was not in line with an animal-based study
that shows the opposite [9]. In summary, our preliminary study could not exclude the
possibility that other nutrients in coffee, such as CGAs, polyphenols, and vitamin B family
may have explained the association between coffee intake and gut microbiota composition
and structure. Adjusting for dietary intake of vitamin B2 in the multivariate analysis did
attenuate the association between gut bacteria and caffeine and coffee intake. It is noted
that coffee has abundant vitamin B2.

Our study has uniqueness because we studied the mucosal-associated adherent micro-
biota using the colonic biopsies taken after bowel preparation. Compared to the luminal gut
microbiota, the mucosa-associated adherent microbiota is more likely to interact directly
with the immune cells in the mucosa and therefore impact host physiology [57]. Multivari-
ate analysis was used to control for potential confounding effects of lifestyle and dietary
factors. The study had some limitations. First, participants were mainly obese elderly or
middle-aged white veterans, possibly affecting the generalizability of the findings to the
non-veteran general population, women, lean individuals, or younger individuals. Second,
study participants were retrospectively asked about their food consumption, which could
introduce information bias. The caffeine intake was quantified by using 43 food items in
the questionnaire. However, we could not exclude the possibility of measurement error
in quantitating caffeine intake. Third, selection bias was likely as not all participants re-
sponded to the FFQ. Fourth, the relative abundance of multiple members in Lachnospiraceae
family differed by caffeine intake. Metagenomic shotgun sequencing and metabolomics
study should be conducted to define the bacterial species and their functions in association
with coffee and caffeine intake. Lastly, the present analysis was based on a small sample
size and was cross-sectional by nature. By virtue of these study limitations, the findings
should be considered preliminary.

In summary, our study sheds light on the associations between caffeine intake and
coffee consumption and the gut microbiota of individuals with endoscopically normal
colons. The association between caffeine, gut microbiota, and health outcomes and the role
of Erysipelatoclostridium in metabolic diseases deserves further investigation. In addition,
the health effect of coffee may be partially explained by prebiotic vitamin B2. Future
nutrigenomic and metabolomic studies are needed to identify who will benefit from coffee
consumption. If we can understand how phytochemicals and nutrients maintain gut
symbiosis and how they impact human physiology, we could uncover a novel mechanism
for disease prevention.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15071747/s1, Table S1: Basic characteristics of study participants
based on coffee consumption. Figure S1: The relative abundance (%) of bacterial genera (relative
abundance > 0.5%) that significantly differed (q values < 0.05) based on caffeine intake.
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